Crystal Structure
Communications
ISSN 0108-2701

The allyl complex di- μ-chloro-bis\{[(1,2,3- $\boldsymbol{)}$)-1-(ethoxycarbonyl)-5,5-dimethyl-4-oxohexenyl]palladium(II)\}

Anthony L. Spek, ${ }^{\text {a* }}$ Johannes Canisius, ${ }^{\text {b }}$ Hans Preut ${ }^{\text {b }}$ and Norbert Krause ${ }^{\text {b }}$
${ }^{\text {a Bijvoet Center for Biomolecular Research, Department of Crystal and Structural }}$ Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and ${ }^{\text {b }}$ Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
Correspondence e-mail: a.l.spek@chem.uu.nl
Received 26 May 2000
Accepted 22 June 2000

The title compound, di- μ-chloro-bis $\{[(2,3,4-\eta)$-ethyl 6,6 -di-methyl-5-oxohept-2-enoato]palladium(II) $\}, \quad\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{17}-\right.\right.$ $\left.\mathrm{O}_{3}\right)_{2}$], is a binuclear chloro-bridged palladium allyl complex that was obtained serendipitously from the reaction of ethyl 6,6-dimethyl-2-hepten-4-ynoate with $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ in watercontaining alcohol. The allyl group is substituted with an ester and a tert-butylcarboxy group. The dimeric molecules link via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts into a two-dimensional network parallel to the $b c$ plane.

Comment

The title compound (Fig. 1) belongs to the π-allylpalladium group of complexes. These complexes are important intermediates in a number of catalytic reactions such as allylic substitution (Godlesky, 1991), allylic oxidation (Bäckvall et al., 1990) and 1,4-oxidations (Castaño \& Bäckvall, 1995) of

(III)
conjugated dienes and in respect of the last reactions, we wanted to find out if a similar reaction is possible using enynes instead of dienes. Before employing any catalytic procedures, we tried to obtain a palladium complex of an enyne. It was thus found (see Scheme) that ethyl 6,6-dimethyl-2-hepten-4-

Figure 1
A view of the title compound with the atom-numbering scheme. Displacement ellipsoids for non- H atoms are drawn at the 50% probability level [symmetry code: (i) $-x, 2-y, 1-z$].
ynoate, (I), reacts on heating with $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ in watercontaining ethanol to give the title compound, (II), and ethyl 5-chloro-6,6-dimethyl-2,4-heptadienoate, (III), as a side product.

The molecular structure of the dimeric title complex is similar to the structure of the related di- μ-chloro-bis $\left[\eta^{3}-1,3-\right.$ bis(pivaloyl)allylpalladium(II)] complex (Ukhin et al., 1976), which was prepared via a completely different route. A trinuclear palladium complex with the same allyl ligand, but with bridging acetates rather than Cl , has also been reported (Ukhin et al., 1981). The $\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{C}$ distances for the current structure are well within the range reported for the two earlier structures (Ukhin et al., 1976, 1981). All three refined $\mathrm{C}-\mathrm{H}$ atoms of the allylic system are bent away from the Pd atom. Two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (Table 2) link, in the absence of classical hydrogen bonds, the dimers into a twodimensional network parallel to (100).

Experimental

Ethyl 6,6-dimethyl-2-hepten-4-ynoate, (I) ($1.44 \mathrm{~g}, 8.0 \mathrm{mmol}$), was added to a solution of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}(2.20 \mathrm{~g}, 6.0 \mathrm{mmol})$ in ethanol under an argon atmosphere and the mixture warmed to 333 K for 2 h . The solution, which turned bright yellow, was poured into water and extracted with toluene. The extract was washed with water, saturated aqueous NaHCO_{3} solution and saturated aqueous NaCl solution, and

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Pd1-Cl1	$2.3836(11)$	O1-C1	$1.202(2)$
Pd1-C2	$2.109(2)$	O2-C1	$1.330(2)$
Pd1-C3	$2.0913(18)$	O2-C10	$1.450(2)$
Pd1-C4	$2.138(2)$	O3-C5	$1.208(2)$
Pd1-Cl1 ${ }^{\mathrm{i}}$	$2.3811(11)$		
			$110.19(16)$
$\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$88.91(3)$	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$119.46(15)$
$\mathrm{Pd} 1-\mathrm{Cl} 1-\mathrm{Pd} 1^{\mathrm{i}}$	$91.09(3)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 4$	$122.83(16)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 10$	$116.07(15)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6$	$111.07(18)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$125.06(18)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 11$	
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$124.74(16)$		

[^0]dried with anhydrous MgSO_{4}. After filtration and removal of the solvent, the crude yellow oil was subjected to column chromatography on SiO_{2}, eluting with cyclohexane/diethyl ether (20:1). The by-product eluted first and yielded $273 \mathrm{mg}(21 \%)$ of ethyl 5 -chloro-6,6-dimethyl-2,4-heptadienoate, (III). Subsequent elution with diethyl ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1) gave a purified yellow oil. Addition of pentane to this oil induced crystallization to give $1.15 \mathrm{~g}(56 \%)$ of the π-allylpalladium complex (II).

Crystal data

$\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{3}\right)_{2}\right]$

$$
Z=1
$$

$M_{r}=678.23$
Triclinic, $P \overline{1}$
$a=6.6157$ (11) \AA
$b=9.654$ (4) A
$c=10.748$ (4) \AA
$\alpha=101.96$ (3) ${ }^{\circ}$
$\beta=90.13(3)^{\circ}$
$\gamma=104.29$ (3) ${ }^{\circ}$
$V=649.7$ (4) \AA^{3}

$$
D_{x}=1.734 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=9.6-14.0^{\circ}$
$\mu=1.623 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, orange
$0.50 \times 0.42 \times 0.13 \mathrm{~mm}$

Data collection

CAD-4T diffractometer

$$
\begin{aligned}
& R_{\text {int }}=0.034 \\
& \theta_{\text {max }}=27.5^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-12 \rightarrow 12 \\
& l=-13 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: } 3 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R(F)=0.018$
$w R\left(F^{2}\right)=0.044$
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0134 P)^{2}\right.$
$+0.2250 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
2994 reflections
161 parameters

The allylic H atoms were located from a difference map and their positions refined with individual isotropic displacement parameters. Their C-H distances range from 0.91 (2) to 0.96 (3) Å. No additional symmetry was found with PLATON/LEPAGE (Spek, 2000), nor any solvent-accessible voids with PLATON/SOLV (Spek, 2000). All other H atoms were treated as riding on and with isotropic displacement parameters related to their carrier atoms. The methyl moieties were refined as rigid rotators.

Data collection: locally modified CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 (de Boer \& Duisenberg, 1984); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: PLATON.

We thank Professor G. van Koten for his interest in this study. This work was supported in part (ALS) by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO) and the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Volkswagen-Stiftung.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GG1012). Services for accessing these data are described at the back of the journal.

References

Bäckvall, J. E., Hopkins, R. B., Grennberg, H., Mader, M. M. \& Awasthi, A. K. (1990). J. Am. Chem. Soc. 112, 5160-5166.

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1999). The DIRDIF99 Program System. University of Nijmegen, The Netherlands.
Boer, J. L. de \& Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410.
Castaño, A. M. \& Bäckvall, J. E. (1995). J. Am. Chem. Soc. 117, 560-563.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Godlesky, S. A. (1991). Comprehensive Organic Syntheses, Vol. 4, pp. 585-662. Oxford: Pergamon.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2000). PLATON. Utrecht University, The Netherlands.
Spek, A. L. (1997). HELENA. Utrecht University, The Netherlands.
Ukhin, L. Y., Dolgopolova, N. A., Kuz'mina, L. G. \& Struchkov, Y. T. (1981). J. Organomet. Chem. 210, 263-272.
Ukhin, L. Y., Orlava, Z. I., Bokii, N. G. \& Struchkov, Y. T. (1976). J. Organomet. Chem. 113, 167-171.

[^0]: Symmetry code: (i) $-x, 2-y, 1-z$.

